MULTENNA BASED MULTIPLIERS FOR THz APPLICATIONS

EP/K038125/1

THz Workshop at QMUL 31/05/16

The Team

QMUL:

- Dr. Rost Dubrovka (PI)
- Dr. Mélusine Pigeon (PDRA)
- Dr. Oleksandr Sushko (PDRA)
- Dr. Rob Donnan (CI)
- Dr. Theo Kreouzis (CI)
- Prof. Clive Parini (CI)

RAL:

- Dr. Peter Huggard
- Dr. Byron Alderman
- Dr. Hui Wang

THz Workshop at QMUL 31/05/16

Contents

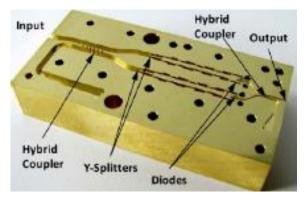
Introduction

- State-of-the art
- Proposed concept
- Early Work
 - Multenna single element Designs
 - Multenna and diode matching
 - Multenna prototype and measurements

THz Workshop at QMUL 31/05/16

Context for need of high-power THz Sources

- Urgent need of THz sources for spectroscopy, bio-sensing, medical and pharmaceutical applications and potential industrial and security applications.
 - Unlike X-rays, non-ionising THz radiation does not damage organic material
 - Limitation: attenuation of incident energy by bulk water
- The **challenge** us to develop coherent THz sources that are:
 - Wideband-tuneable
 - Efficient
 - Compact
 - Relatively inexpensive (i.e. Buying a VNA compared with a p-Ge laser)

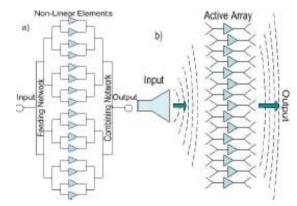

THz Workshop at QMUL 31/05/16

State-of-the art

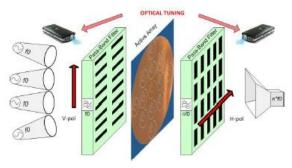
- Frequency multiplier are:
 - Phase-lockable and frequency agile
 - No need of cryogenic cooling
 - Robust and compact
 - Long operational life
- Existing device:
 - Output powers in the range of milliwatts
 - Dimensions scaled (reducing parasitic and transit-time effects)
 - High cost, large dimensions, complex and need of cryogenic cooling photo-mixer
 - High frequency antennas and RF circuitry difficult to manufactured
 - Bulky waveguide multiplier blocks
 - Limited CAD tools taking into account coupling between antenna and active circuit
 - Individual tuning of array element impractical

Ward et al, "Tuneable broadband frequency-multiplied terahertz sources", in proc. 33rd Int. Conf. Infrared, Millimeter and Terahertz Waves, Pasadena, CA, Sept. 2008

THz Workshop at QMUL 31/05/16



Proposed concept – revisiting old ideas


- Create a Quasi-optical multiplier array
 - No waveguide
 - Combine multiplied outputs from solid state devices
 - Antennas array coupled to non–linear devices (Schottky diode)
- Advantages:
 - Longitudinal compactness
 - Built-in frequency and polarization control elements
 - Simpler matching
 - Less ohmic losses
- Each element = a part of the total power No risk of thermal breakdown
- Experimentally realised efficiency of QO = 60% at 800 GHz and 100% at 300 GHz
- Mm-wave oscillators illuminate a QO multenna array which coherently radiates a beam waist at 2 or 3 times the input frequency.
 - Based on planar Schottky diode multipliers (less than 1mm square)
 - Multenna: innovative receive antenna, multiplier and output antenna
- Aims:
 - Prototyping a powerful QO THz source at 0.3THz (at least 100mW in a near Gaussian beam)
 - Fabrication and incorporation of optically addressable control elements made from organic semiconductors

QO power-combining using distributed networks:

a) Conventional power combining concept

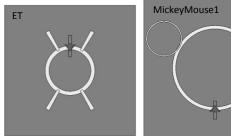
b) spatial power combining concept

Novel integrated QO multiplier

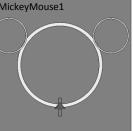
THz Workshop at QMUL 31/05/16

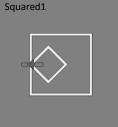
MULTENNA SINGLE ELEMENT DESIGNS

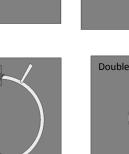
THz Workshop at QMUL 31/05/16



School of Electronic Engineering & Computer Science


Multenna Proposed Design


- Multenna= slot ring
 - Proven working design
- Antenna designed at 100GHz
 - Tuned to radiates at 300GHz too
 - Incorporation of a tripler
 - Tripler= Schottky diode
- Single element of around 1*1mm² size
 - Simulated in free space


Squared2

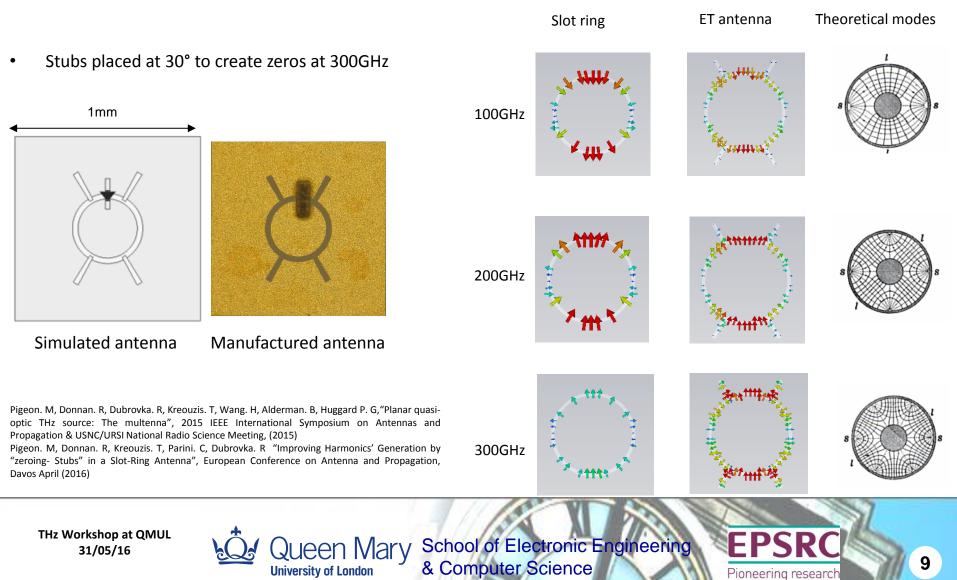
Mixtot

The top designs

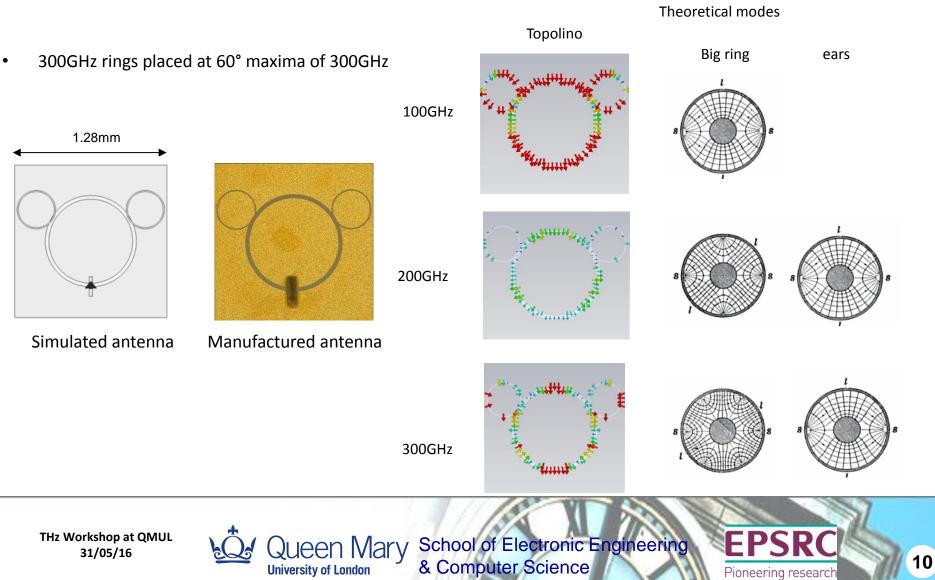
MickeyMouse2

The designs to try

DoubleET1


Yeap, S.B. et al., "FDTD simulation and measurements of a 90GHz quasioptical annular slot receiver," IEE Proc. MAP, 152 (2), 117-123 (2005)

THz Workshop at QMUL 31/05/16



ET ANTENNA

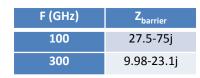
and skills

TOPOLINO ANTENNA

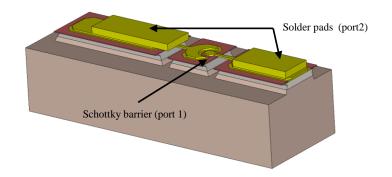
and skills

MULTENNA AND DIODE MATCHING

THz Workshop at QMUL 31/05/16



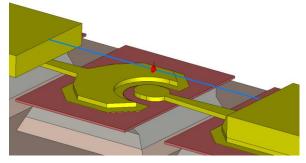
School of Electronic Engineering & Computer Science



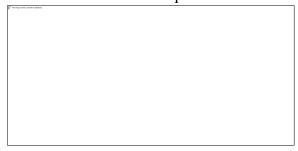
MULTENNA AND DIODE MATCHING

- Two ports are considered on the diode:
 - The schottky barier
 - The solder parts
- Diode=barrier+structural
- Impedance diode=Impedance barrier+impedance structural
- Impedance barrier:

- Impedance structure ???
 - EM simulation


IMPEDANCES

- Waveguide port KO -> discrete port
- 2 different discrete ports: Wire or Face
- Impedance at port 2 when port 1 is loaded


Type of Port 2	Frequenc y (GHz)	Z _{port2}	R (Ω)	C (10 ⁻¹⁴ F) or L (10 ⁻¹¹ H)	Z _{port1}
Wire	100	13.5-28j	13.5	5.68 (C)	27.5-75j
Wire	300	7.88+59j	7.88	3.13 (L)	9.98-23.1j
Face	100	12.7-41j	12.7	3.88 (C)	27.5-75j
Face	300	9.64+16j	9.64	0.85 (L)	9.98-23.1j

Impedance at port 1 when port 2 is loaded

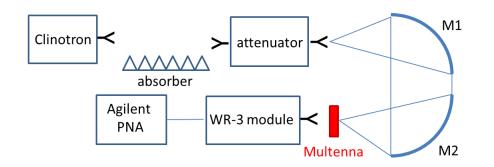
Type of Port 2	Frequency (GHz)	Z _{junction}	Z _{junction} expected	
Wire	100	29.5+74j	27.5+75j	
Wire	300	13+23.2j	9.98+23.1j	
Face	100	28.59+74.1j	27.5+75j	
Face	300	12.68+23.9j	9.98+23.1j	

THz Workshop at QMUL 31/05/16

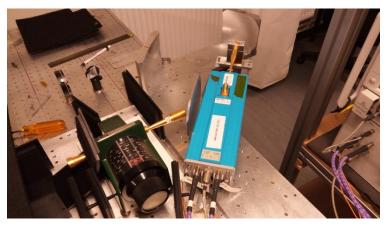
School of Electronic Engineering & Computer Science

MULTENNA PROTOTYPE AND MEASUREMENT

THz Workshop at QMUL 31/05/16



School of Electronic Engineering & Computer Science



Multenna Prototyping

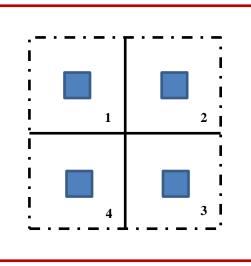
- Quasi-optical measurement bench:
 - Very small size of prototype 1*1mm²
 - Ease the manufacturing and the measurement process

Schematic of the bench

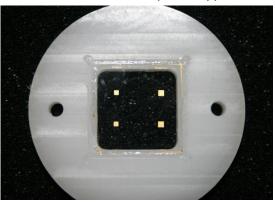
Real bench

Quasi-optical measurement bench

THz Workshop at QMUL 31/05/16


Prototype design

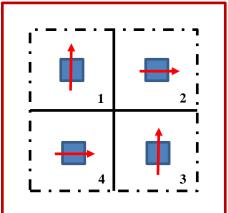
- Prototype design:
 - Quartz tile of 20*20mm
 - Active on 15*15mm
 - 4 elements per tile
 - Distance inter element of approximatively 10mm
- Consequences
 - Increase substrate size for the Multenna from 1 to 10mm
 - Very low impact on impedances at both frequencies

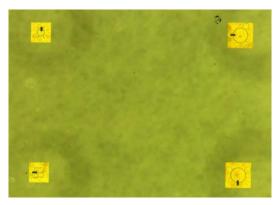

Frequency (GHz)	1 mm ² substrate	10 mm ² substrate
100	7.2 + j43.7	7.3 + j42.6
300	10.8 - j16.9	10.8 - j16.2

Manufactured antenna with Schottky diode

Schematic of the prototype tile

Manufactured tile


THz Workshop at QMUL 31/05/16



Depolarization of neighbour elements

- To increase isolation of elements:
 - Differentiation of the polarization of two neighbours elements
 - Vertically
 - Horizontally
 - 2 elements in diagonal have the same polarization

Schematic of the tile with polarization differentiation

Zoom on the manufactured tile

THz Workshop at QMUL 31/05/16

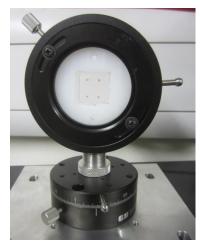
Results on decoupling

- If we compare:
 - Array1: all the samples have the same polarization
 - Array2: differentiation in the polarization of the samples

	100	GHz	300GHz		ſ
In dB	Array1	Array2	Array1	Array2	
S1,2	-32.3	-48.7	-35.3	-56.7	
S1,3	-37.2	-37.3	-40.3	-39.9	
S1,4	-43.4	-56.3	-45.7	-53.5	
S2,3	-43.4	-49.1	-45.7	-55.1	
S2,4	-37.2	-37.4	-40.3	-39.9	
S3,4	-32.9	-49.6	-35.8	-54	l

- Decoupling improved of between -6 and -21.4dB between neighbour's elements
- Horizontal decoupling much improved than vertical one (already low without depolarization)
- No change between diagonal elements

THz Workshop at QMUL 31/05/16

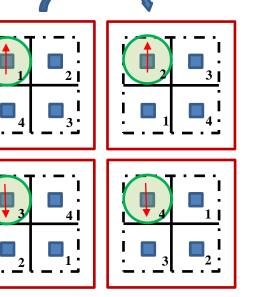


School of Electronic Engineering & Computer Science

Rotation of the holder

When the quartz tile is placed in a rotating holder:

- Simple rotation of 90° illuminate the next sample
- No change in the measurement bench
- No need of realignment
- Polarization always ok



Manufactured tile in the rotating holder

THz Workshop at QMUL 31/05/16

School of Electronic Engineering & Computer Science

Rotation of 90°

Schematics of the rotation of the tile

Pioneering research

and skills

Thank you for your attention

THz Workshop at QMUL 31/05/16

School of Electronic Engineering & Computer Science

