School of Electronic & Electrical Engineering

PROSPECTS FOR TERAHERTZ SYSTEM-ON-SUBSTRATE TECHNOLOGY

Ian Robertson

i.d.robertson@leeds.ac.uk

Introduction

Integrated RWGs: SIW and Hollow SIW

Dielectric guides for THz

3D packaging approaches

Conclusions

Why go > 100 GHz? High bandwidth for communications Small high-gain antennas Special sensing capabilities

See ITU, Recommendation ITU-R P.676-10 (09/2013), Attenuation by atmospheric gases

Transceiver system partitioning

From Microwave and Millimetre-Wave Design for Wireless Communications, Wiley pub. 2016

MCM, SiP, SoP, SoS

Samanta, K.K., and Robertson, I. D., "Advanced Multilayer Thick-Film System-on-Package Technology for Miniaturized and High Performance CPW Microwave Passive Components," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.1, no.11, pp.1695-1705, Nov. 2011, doi: 10.1109/TCPMT.2011.2167231

Q's of hundreds Loss of order dB/cm

Q's of thousands Loss of order dB/m

94 GHz Sub-System for Medical Research www.hxi.com

Ground plane

Substrate Integrated Waveguide

From Microwave and Millimetre-Wave Design for Wireless Communications, Wiley pub. 2016

24GHz FMCW Radar Front-End System on Substrate Li, Zhaolong; Wu, Ke; Ecole Polytechnique, Canada

SIW Characterisation

Hibridas® Photoimageable Thick Film Technology

V-band waveguide-microstrip transition back-to-back measurements

Measured results 180 GHz filter

60 GHz Receiver

LTCC prototyping using LPKF laser system

SIW with solid wall and via posts

Measurement Results

• Both solid walled (groove based) and via post SIW can achieve similar performance

Hollow SIWs

LTCC Microfluidic Channels

LTCC Channel Laser Machining

Plain waveguides

Slot Antenna Array (lower layers)

Hollow SIW

SoS using Hollow SIWs

From Microwave and Millimetre-Wave Design for Wireless Communications, Wiley pub. 2016

Hollow Substrate Integrated Waveguide (HSIW) - progressive lamination technique

Filter

HSIW: inner layers before lamination

HQIWI I nee ve QIWI and QW/G

Modelled loss

Jin, Lukui, Lee, R.M.A., and Robertson, I.D., "Analysis and Design of a Novel Low-Loss Hollow Substrate Integrated Waveguide", IEEE Transactions on Microwave Theory and Techniques, vol.62, no.8, pp.1616-1624, Aug. 2014, doi: 10.1109/TMTT.2014.2328555

HSIW Measurements

Through line measurement

HSIW 6x6 Slot Antenna Array

35 GHz HSIW Slot Antenna Array

L. Jin, R. M. Lee, I. D. Robertson, "Analysis and Design of a Slotted Waveguide Antenna Array using Hollow Substrate Integrated Waveguide", European Microwave Conference, September 2015

Micromachined Waveguides using SU8 Steenson *et al.*, 1998

D'Auria, M.; Otter, W.J.; Hazell, J.; Gillatt, B.T.W.; Long-Collins, C.; Ridler, N.M.; Lucyszyn, S., "**3-D Printed Metal-Pipe Rectangular Waveguides**", IEEE Transactions on Components, Packaging and Manufacturing Technology, Sept. 2015

3D printed waveguide filter Courtesy Stepan Lucyszyn, Imperial College Reference 5 of paper

WR-1 waveguide 1.92 – 1.35 dB/cm calculated for gold, rgh=1.5 (VDI)

Circa 10 dB loss reported for a 1 inch guide

Dielectric Waveguides

Planar Dielectric Guides: Key Candidates

Image guide insular image guide NRD Rib image guide

From *Microwave and Millimetre-Wave Design for Wireless Communications*, Wiley pub. 2016

EM bandgap structure

Lucyszyn, S.; Silva, S.R.P.; Robertson, I.D.; Collier, R.J.; Jastrzebski, A.K.; Thayne, I.G.; Beaumont, S.P., "Terahertz multi-chip module (T-MCM) technology for the 21st century?," in Multi-Chip Modules and RFICs (Ref. No. 1998/231), IEE Colloquium on , vol., no., pp.6/1-6/8, 5 May 1998

Package-Level Integration

CMOS Technology Development and f_t

http://www.engadget.com/2013/01/10/silicon-image-ultragig-6400-wireless-hdmi-hands-on-video/

Also see:

Wilocity (now part of Qualcomm) IEEE802.11ad module (google..)

ITRS White Paper The next Step in Assembly and Packaging: System Level Integration in the package (SiP)

"A 37.5-mW 8-dBm-EIRP 15.5" -HPBW 338-GHz Terahertz Transmitter Using SoP Heterogeneous System Integration", Chun-Hsing Li, et al IEEE MTT Trans 2015

NGST InP "chiplets" on CMOS

"Sub-Millimeter Wave InP Technologies and Integration Techniques" Vesna Radisic et al., 2015 IEEE MTT-S International Microwave Symposium

III-V technologies needed to deliver any significant power beyond 100 GHz

+ a whole host of specialist THz devices

Conclusions

To go significantly beyond 100 GHz with SoS requires hollow SIW or dielectric waveguides

Silicon / III-V both have key roles to play in realising affordable THz systems

3D PACKAGING TECHNOLOGY is key to exploitation of diverse semiconductor technologies in THz systems

Addressing these challenges can lead to highly novel large-area SiP and SoS systems

Acknowledgments

Contributors:

M. F. Shafique, K. K. Samanta, D. Stephens, M.S. Aftanasar, Razak M. A. Lee, M. Chongcheawchamnan, C.Y. Ng, Lukui Jin, Ayodeji Sunday, P. R. Young, Isibor Obuh, Nutapong Somjit, Paul Steenson, Mario D'Auria, Stepan Lucyszyn, Dilshani N. Rathnayake-Arachchige, David Hutt, Paul Conway

This work was supported by the Engineering and Physical Sciences Research Council and by the Innovative Manufacturing Research Centre (IeMRC) based at Loughborough University.